Minggu, 13 April 2014

Sejarah Perkembangan Media Transmisi

Media Transmisi

Dalam abad-abad terakhir ini sejumlah penemuan telah memungkinkan untuk dibangunnya hubungan telekomunikasi dengan kapasitas yang selalu bertambah. Saluran telegrap permulaan merambat-kan sinyal yang kecepatannya sampai dengan 30 kata per menit atau sekitar 15 bit per detik. Beberapa kabel serat optik yang dipasang saat ini dalam jaringan trunk jarak jauh mempunyai kapasitas untuk membawa sinyal sampai dengan 2,4 Gbps. Kapasitas teoritis serat kaca setebal rambut ini adalah sedemikian sehingga hanya dengan menggunakan tiga serat, kapasitasnya sudah mencukupi untuk separuh pelanggan telepon di AS bercakap-cakap dengan separuh pelanggan lainnya pada saat yang sama.
Banyak sekali kabel serat optik dipasang saat ini, terutama pada jaringan jarak jauh dan antar kantor. Setelah sepuluh tahun mendatang kabel serat optik akan secara progresif dipasang sebagai loop lokal di beberapa wilayah. Na-mun pada saat yang sama sejumlah besar media transmisi yang beragam akan terus digunakan. Ini akan memerlukan waktu tertentu sebelum semua kabel koak-sial dan sistem kawat tembaga digantikan dengan serat optik itu. Kita membahas

SEJARAH
Kemampuan untuk mengkombinasikan beberapa channel menjadi satu sambun-gan fisik mulai beroperasi pada tahun 1847 dengan skema yang dibuat oleh Baudot yang memungkinkan enam pengguna bertransmisi secara keroyokan melalui sebuah saluran telegrap — suatu kemajuan dramatis yang mempertinggi kecepatan menjadi sekitar 90 bps.

Pada tahun 1876 Alexander Graham Bell mengucapkan kalimatnya untuk per-tama kalinya melalui hasil penemuannya, yaitu, telepon. Tahun-tahun berikutnya dibangunlah saluran telepon, papan sentral dan kemudian pertukaran otomatis.
"Loading" yang dibahas pada Bab diaplikasikan ke saluran telepon pada tahun 1899. Sebelumnya saluran komersial terpanjang membentang dari New York ke Chicago. Mulai tahun 1911 percakapan dari New York sampai Denver menjadi terwujud, yang mana jarak sejauh itu saat ini merupakan suatu pencapaian yang menakjubkan mengingat pada saat itu penguat (amplifier) belumlah ditemukan.
Pada tahun 1913, terjadi suatu kemajuan besar saat repeater tabung hampa udara mulai digunakan. Pelayanan dari pantai bagian barat ke pantai bagian ti-mur Amerika Serikat dengan menggunakan tube semacam itu mulai beroperasi pada tahun 1915.

Kemajuan elektronik berlanjut dengan cepat, dan pada tahun 1918 sistem carrier (pembawa) untuk pertama kalinya digunakan sehingga memungkinkan dua channel suara dikirimkan melalui pasangan kawat tung-gal. Jumlah channel suara yang dapat dikirimkan melalui kabel tunggal segera meningkat seiring dengan perjalanan tahun. kabel koaksial menggantikan ka¬bel sepasang kawat untuk sambungan berkapasitas tinggi, dan kini kabel ini membawa ribuan channel telepon.


Pada tahun 1897 Marconi mendirikan Wireless Telegraph and Signal Com¬pany. Pada tahun 1899 dia berhasil mengirimkan pesan radio menyeberangi Selat Inggris dan pada tahun 1901 menyeberangi Samudra Atlantik. Lodge mengem-bangkan sarana tuning radio. Telegraf radio berkembang cepat.

Pada tahun 1902 Fessenden mengembangkan suatu sistem untuk memodulasi frekuensi radio melalui suara manusia, tetapi telepon radio pada skala komersial masih menunggu kedatangan penguat dan modulator yang menggunakan tabung hampa udara. Stasiun radio komersial pertama didirikan pada tahun 1920 untuk menghubungkan dua jaringan telepon darat antara Pulau Santa Catalina di Lepas pantai California dengan daratan Amerika. Mulai tahun 1927 telepon di Eropa dan Amerika Serikat dihubungkan secara komersial.

Hubungan radio gelombang mikro (microwave) didirikan setelah perang du-nia dan kini telah menjadi tokoh utama pada sistem telepon. Tower-tower, baik besar dan kecil, dengan sejumlah antena gelombang mikro tersebar di kota-kota besar dan di seluruh penjuru negeri. Mata rantai antena gelombang mikro yang kini hampir semuanya digital dapat membawa sekitar 13.000 channel.

Dekade 1960-an memperkenalkan satelit, laser, dan waveguide berkecepatan tinggi. Sejak itulah serat optik menggantikan waveguide untuk trunk-trunk jarak jauh. Kapasitas saluran komunikasi jarak jauh meningkat dengan cepatnya. Ka-rena jumlah rangkaian yang dibawa oleh suatu saluran meningkat, maka biaya per rangkaian pun menurun. Sekarang tersedia sistem serat optik yang dapat mem¬bawa lebih dari satu juta rangkaian suara (melalui banyak serat dalam satu kabel).

Pada bab ini kita membahas berbagai tipe media transmisi fisik yang sedang digunakan. Pada bab-bab berikutnya kita menjabarkan secara lebih rinci menge-nai cara penggunaan tipe-tipe tersebut untuk semua pola kerja sinyal digital, yang meliputi suara, data, video, dan televisi.

FREKUENSI

Media telekomunikasi dapat digolongkan menurut frekuensi sinyal yang dikirim-kan melalui media itu. Sebagai contoh, saluran gelombang mikro (microwave) beroperasi pada frekuensi sangat tinggi (VHF, very high frequency), kabel koak-sial pada tingkat frekuensi yang lebih rendah, dan sepasang kawat beroperasi pada tingkat frekuensi yang lebih rendah lagi. Kita semua tidak asing dengan frekuensi radio domestik.
Studio pemancar FM berada pada gelombang antara 88 sampai dengan 108 MHz. Studio AM berpancar pada gelombang antara 500 sampai de¬ngan 1600 Hz. Frekuensi ini bersama-sama dengan frekuensi operasi media-me¬dia lainnya ditunjukkan pada Gambar 11.1. Ini adalah sebagian kecil dari keselu-ruhan spektrum electromagnet.
Apa yang akan menjadi perhatian khusus kita bukanlah frekuensi operasi absolut tetapi jangkauan frekuensi yang dapat dikirimkan melalui fasilitas itu.pada umumnya, kuantitas data atau jumlah informasi yang dapat ditransmisikan adalah sebanding dengan bandwidth (lebar gelombang) atau jangkauan frekuensi yang dapat dikirimkan. Pada Gam¬bar 11.1, sebagai contoh, jangkauan frekuensi yang ditunjukkan untuk radio gelom¬bang mikro (microwave) adalah jauh lebih besar daripada yang untuk pemancar FM. Yang pertama membentang dari sekitar 2000 sampai 12.000 MHz,

102 c 103 Frequency

Cycles per Second
(Hertz) 104 10s 10s 107 108 109 1010 10n
Band Designations: Very Low Frequency Low Frequency Medium Frequency High Frequency Very High Frequency Super High Frequency Ultra High Frequency
Band Number: 4 5 6 7 8 9 10 11
Metric Subdivision: Myriametric Waves Kilometric Waves Hectometric Waves Decametric Waves Metric Waves Decimetric Waves Centimetric Waves Millimetric Waves

Spektrum frekuensi frekuensi yang digunakan dalam telekomunikasi - sebagian kecil dari keseluruhan spektrum elektromagnet yang ditunjukkan pada Gambar 1.2. Catatan: Alokasi frekuensi radio untuk penggunaan yang berbeda adalah jauh lebih rumit daripada yang ada di diagram ini, yang sudah disederhanakan untuk menunjukkan kategori utama yang dibahas pada buku ini. Jangkauannya 10.000 MHz. Sedangkan yang kedua membentang antara 80 sam-pai 150 MHz, berjangkauan sekitar 70 MHz. Umumnya pasangan kawat (wire pairs) mentransmisikan frekuensi antara 200 sampai dengan 300 kHz. Dengan demikian, melalui gelombang mikro, seseorang dapat mentransmisikan jauh lebih banyak informasi daripada melalui frekuensi Pemancar FM dan jauh lebih banyak lagi bila dibandingkan dengan melalui wire pair.

MEDIA TRANSMISI NON-OPTIK

Sepasang Kawat-Telanjang (Open-wire pair)
Pada awal mula hampir semua sambungan telepon dibuat dari sarana sepasang kawat yang direritangkan di antara tiang-tiang telepon. Berpasang-pasang kawat yang diperlihatkan pada Gambar 11.2 direntangkan dari isolator pada persilangan tiang-tiang. Kawatnya terbuat dari tembaga, atau baja yang dilapisi tembaga — baja untuk kekuatannya, tembaga untuk konduktivitasnya. Pada frekuensi diatas 1000 Hz, sebagian besar arus mengalir di bagian "kulit luar" kawat, yaitu di lapisan tembaga. Kawat dalam setiap pasangan ini berdiameter sekitar 0,128 inci dan jaraknya sekitar 8 sampai 12 inci.

Sepasang kawat ini dapat merambatkan percakapan telepon jarak jauh tanpa memerlukan penguatan. Dengan kawat semacam itulah, sebagai contoh, orang New York dapat berbicara dengan orang Denver sebelum penguat yang terbuat dari tabung hampa udara diketemukan. Kini seringkali diperlukan untuk mengi-rimkan beberapa channel suara bersama-sama melalui sepasang kawat yang sama. Ini memerlukan frekuensi lebih tinggi, dan pada frekuensi yang lebih tinggi penurunan (attenution) akan lebih besar. Oleh karena itu dipasang lebih banyak penguat (amplifier) dalam jalur itu.
Wire pair (sepasang kawat) ini rentan terhadap crosstalk (kebocoran percaka¬pan). Kopling induktif atau elektromagnet akan menghasilkan interferensi, dan percakapan pada salah satu pasangan akan sayup-sayup terdengar oleh pasangan kawat di dekatnya. Penambahan jarak pemisahan antar masing-masing pasangan dan pemutaran periodik dari kawat ini mengurangi interferensi ini sampai ke tingkat dapat diabaikan. Kondisi cuaca mempengaruhi hilangnya attenuasi (penu¬runan) pada jalur open-wire ini. Kebocoran terjadi pada isolator bila basah. Resis-tansi kawat meningkat sejalan dengan temperaturnya, dan kondisi basah dan lembab meningkatkan penurunannya

Media Transmisi Tidak Terpadu

1. Infrared
nfra merah (infra red) ialah sinar elektromagnet yang panjang gelombangnya lebih daripada cahaya nampak yaitu di antara 700 nm dan 1 mm. Sinar infra merah merupakan cahaya yang tidak tampak. Jika dilihat dengan dengan spektroskop cahaya maka radiasi cahaya infra merah akan nampak pada spectrum elektromagnet dengan panjang gelombang di atas panjang gelombang cahaya merah. Dengan panjang gelombang ini maka cahaya infra merah ini akan tidak tampak oleh mata namun radiasi panas yang ditimbulkannya masih terasa/dideteksi. Infra merah dapat dibedakan menjadi tiga daerah yakni:
• Near Infra Merah………………0.75 – 1.5 µm
• Mid Infra Merah..………………1.50 – 10 µm
• Far Infra Merah……………….10 – 100 µm

gambar1[the sauna house]
Sinar matahari Langsung terkandung 93 lumens per watt flux radian yang termasuk di dalamnya infrared (47%), cahaya tampak (46%), dan cahaya ultra violet ( 6%) .
Sinar infrared terdapat pada pada cahaya api,cahaya matahari, radiator kendaraan atau pantulan jalan aspal yang terkena panas.Saraf pada kulit kita dapat menginderai perbedaan suhu permukaan kulit ,namun kita tidak dapat merasakan sinar infrared.
Sinar infrared bahkan digunakan untuk memanaskan makanan.Misalnya pada restauran cepat saji.
Bagaimana prinsip kita memanfaatkan infrared untuk melihat benda?
Kita memanfaatkan detektor infra red setiap benda yang dipancarkan infra red akan memantulkan dan atau nyerap infra red sehingga detektor menangkap panjang gelombang yang berbeda sesuai suhu yang dikeluarkan benda.
“Karena sumber utama sinar infra red merupakan radiasi termal ataupun radiasi panas, setiap benda memiliki suhu panas tertentu bahkan yang kita kira tidak cukup panas untuk meradiasikan cahaya tampak dapat mengeluarkan energi dan terlihat pada infrared
Semakin panas sesuatu semakin dapat dia meradiasikan radiasi infrared”.
Inilah yang menjadi dasar pendeteksian suhu badan manusia dan pendeteksian sensor untuk mengidentifikasikan orang yang terserang firus flu burung atau flu babi di bandara-bandara internasional.
Manusia pada suhu normal meradiasikan sinar infrared cukup kuat ,panjang gelombangnya sekitar 10 mikron, lihat gambar 1.
gambar 2[nasa]
Gambar yang dicitra dapat diolah kembali untuk mendapatkan warna gambar yang seperti aslinya menggunakan algoritma pengolahan citra.
Contoh lihat gambar 3 ,gambar ini adalah gambar bumi yang diindera pesawat ulang-alik amerika dan diberikan warna berdasarkan intensitas suhu menjadi 256 colours.
gambar3 [nasa]
Banyak benda menyerap radiasi infra red namun ada juga yang memantulkan khususnya sinar near infrared, sinar near infra red tidak berhubungan dengan suhu bendanya kecuali benda tersebut sangat panas suhunya.
Infrared film (detector infrared) pada kamera dapat melihat object dibantu oleh cahaya matahari dan sumber cahaya lain yang mengeeluarkan sinar infra red darinya kemudian dipantulkan dan diserap oleh objek.Kita dapat mendapatkan warna objek dengan bantuan pantulan dan infrared yang diserap objek , warna dari objek adalah kombinasi dari warna merah biru , hijau (RGB) dan infra red.
Kita dapat melihat gambar 4, gambar ini diambil dengan spesial infrared film yang dapat mendeteksi cahaya tak tampak dari infra red.
gambar4[nasa]
Infra red dapat digunakan juga sebagai gelombang cariier yang dapat memperpanjang jarak batas penerimaan gelombang ,namun gelombang yang ditransmisikan harus line of sight (LOS) atau lurus infrared tidak dapat berbelok jika radius pancar vertikal sinar ter halang oleh suatu benda walaupun benda itu transparan. Teori ini kita aplikasikan pada modulasi gelombang digital pada remote tv.
Handphone saat ini telah diintegrasikan dengan perangkat infrared dan blue tooth untuk berkomunikasi dengan pc .
Contoh aplikasi nya yaitu pengiriman aplikasi handphone dari pc atau sebaliknya ,memberikan catatan nomor telpon dari pc yang sangat banyak sehingga tidak dapat disimpan di memory hp biasanya dipakai untuk membroadcast sms.
Apa perbedaan sinar infrared dengan bluetooth ?
pertama ,infrared menggunakan sinar untuk memancarkan sinyal ,seperti tv remote ,sedangkan blue tooth menggunakan frekuensi radio (RF) (2,4 GHz) untuk membroadcast sinyal.
kedua , infra red tidak dapat tembus benda yang menghalanginya untuk menjangkau receiver atau butuh pantulan ,karena sifatnya cahaya .Namun Bluetooth dapat menembus benda seperti dinding sejauh tidak memiliki skin depth yang tinggi.
Kesimpulan : Infra merah (infra red) ialah sinar elektromagnet yang panjang gelombangnya lebih daripada cahaya nampak yaitu di antara 700 nm dan 1 mm. Infrared film (detector infrared) pada kamera dapat melihat object dibantu oleh cahaya matahari dan sumber cahaya lain yang mengeeluarkan sinar infra red darinya kemudian dipantulkan dan diserap oleh objek.Kita dapat mendapatkan warna objek dengan bantuan pantulan dan infrared yang diserap objek , warna dari objek adalah kombinasi dari warna merah biru , hijau (RGB) dan infra red.

2.  Bluetooth


 
Bluetooth adalah suatu teknologi komunikasi wireless yang memanfaatkan frekuensi radio ISM 2.4 GHz untuk menghubungkan perangkat genggam secara terpisah (handphone, PDA, computer, printer, dan lain-lain) dengan jangkauan yang relatif pendek. Perangkat-perangkat genggam yang terpisah tersebut dapat saling bertukar informasi atau data dengan menggunakan Bluetooth.
Teknologi Bluetooth diusulkan oleh Ericsson dan kemudian bersama-sama dengan IBM, Intel, Nokia, dan Toshiba membentuk Bluetooth Special interest Group (SIG) pada tahun 1998 yang kemudian diikuti oleh perusahaan besar seperti Microsoft, 3Com, Lucent, dan Motorola.. Nama Bluetooth diambil dari nama raja Denmark, Harald Bluetooth. Tujuan dari perancangan Bluetooth adalah sebagai teknologi yang murah, handal, berdaya rendah, dan efisien.
Karakteristik Deskripsi
Physical Layer Frequency Hopping Spread Spectrum (FHSS)
Frequency Band 2,4 – 2,4835 GHz (ISM band)
Hop Frequency 1.600 hop/detik
Kecepatan data 1 Mbps (raw)
Keamanan Data dan Jaringan ? Tiga mode keamanan
- Dua tingkat device trust
- Tiga tingkat keamanan layanan
- Enkripsi stream untuk confidentiality,
- Challenge response untuk authentication,
- PIN-derived key
- Limited management
Jangkauan Sekitar 10 meter dan dapat diperluas sampai 100 meter
Throughput ~ 720 kbps
Kelebihan ? Tanpa kabel,
- Sinyal dapat menembus tembok/halangan,
- Biaya relatif murah,
- Berdaya rendah, dan
- Hardware yang relatif kecil.
Kekurangan ? Kemungkinan terjadinya interferensi dengan teknologi lain yang menggunakan ISM band,
- Kecepatan data relatif rendah, dan
- Sinyal yang lemah di luar batasan.
Bluetooth dirancang untuk mendukung aplikasi layanan data dan suara. Suatu jenis saluran Synchronous Connection-Oriented (SCO) dan Asynchronous Connectionless (ACL) digunakan untuk mendukung kelas layanan tersebut.
Format Paket Bluetooth
Bluetooth menggunakan format paket seperti tampak pada gambar 1.1. paket terbagi ke dalam tiga bagian yaitu:
1. 72 bit kode akses
2. 54 bit header
3. Payload sebesar 0 – 2745 bit
Kode akses mempunyai tiga fungsi yaitu sinkronisasi, DC offset compensation, dan identifikasi piconet. Sliding correlator digunakan kode akses untuk sinkronisasi. Kode akses juga memuat sequence sebesar 4 bit untuk DC offset compensation. Sequence inin terletak di awal kode akses. Tiap piconet ditugaskan suatu pengenal yang diperoleh dari identifikasi perangkat master yang menghubungkan tiap paket terpisah ke suatu piconet. Proses untuk memperoleh nilai identifikasi piconet menjamin terdapatnya jarak minimum Hamming antara pengenal.
Header paket mengandung informasi berkaitan dengan hubungan antara piconet. Informasi yang termasuk di dalam header antara lain alamat anggota piconet (0-7), jenis paket, dan general flow control. General flow control terdiri dari sequence number dan acknowledgment bit. Header juga mengandung header error control word. Payload paket mempunyai besar yang bervariasi dan diproteksi dengan FEC.
Beberapa jenis paket telah dispesifikasikan untuk mendukung tiap jenis saluran. Jenis-jenis paket tersebut adalah sebagai berikut:
1. Paket tipe umum
Terdapat lima jenis paket yaitu ID, NULL, POLL,FHS, dan DM1.
Paket ID terdiri dari reduced-length access code sebesar 68 bit tanpa header dan payload. Paket ini digunakan untuk melakukan aktivitas seperti paging, placing inquiries dan mengirim respon. Paket ID merupakan satu-satunya paket yang mempunyai reduced-length access code. Paket ini sangat handal karena menggunakan sliding correlator untuk penerimaan kode akses.
Paket NULL dan POLL terdiri dari kode akses dan header tanpa payload. Yang membedakan kedua paket ini adalah paket POLL meminta respon, sedangkan paket NULL tidak.
Paket FHS terdiri dari payload sebesar 240 bit termasuk penggunaan kode Hamming. Paket ini digunakan untuk mendukung beberapa tugas seperti sinkronisasi clock, pengaturan paging, dan deskripsi kode akses.
Paket DM1 adalah paket yang sesuai dengan arsitektur paket ACL dan dapat dipertimbangkan sabagai paket ACL tetapi tidak terbatas pada saluran ACL saja. Paket ini digunakan untuk memberikan informasi control secara asinkron melalui saluran SCO dan juga membawa data atau informasi control melalui saluran ACL.
2. Paket ACL
Terdapat 7 jenis paket ACL yaitu AUX1, DM1, DH1, DM3, DH3, DM5, dan DH5, yang semuanya dirancang untuk mendukung komunikasi data. Kecuali untuk paket AUX, semua paket diproteksi dengan skema ARQ.
3. Paket SCO
Paket SCO terdiri dari DV, HV1, HV2, dan HV3. Paket SCO digunakan untuk membawa informasi suara. Kecuali untuk paket DV, paket SCO tidak menggunakan skema ARQ seperti pada paket ACL.
Komponen Bluetooth
Suatu sistem Bluetooth terdiri dari beberapa komponen yang bervariasi tergantung apakah module Bluetooth bersifat independent terhadap host atau ditanamkan.
Komponen-komponen tersebut adalah sebagai berikut:
- RF untuk pengiriman dan penerimanaan data
– Module dengan mikroprosesor baseband
– Memory
– Interface ke host device (PDA, mobile phone, dll)
- Jangkauan Operasi
Berdasarkan jangkauan operasinya, perangkat Bluetooth dibagi ke dalam tiga kelas yaitu:
- Class 3 device
Perangkat Bluetooth yang mempunyai daya transmisi sebesar 1 mW dan jangkauannya antara 0,1 sampai 10 meter.
- Class 2 device
Perangkat Bluetooth yang mempunyai daya transmisi sebesar 1 sampai 2,5 mW dan jangkauannya sekitar 10 meter.
- Class 1 device
Perangkat Bluetooth yang mempunyai daya transmisi sebesar 100 mW dan jangkauannya sejauh 100 meter.
Kesimpulan : Bluetooth adalah teknologi yang memungkinkan dua perangkat yang kompatibel, seperti telepon dan PC untuk berkomunikasi tanpa kabel dan tidak memerlukan koneksi saluran yang terlihat. Kelebihannya, Sinyal dapat menembus tembok/halangan, Biaya relatif murah, Berdaya rendah, dan Hardware yang relatif kecil.

Media Transmisi Terpadu

Media transmisi adalah media yang menghubungkan antara pengirim dan penerima informasi (data).
seperti:

1. Cable Coaxial

 Kabel Coaxial merupakan kabel yang terdiri dari konduktor yang dikelilingi dengan spacer yang berfungsi sebagai insulator. Kemudian dikelilingi lagi oleh penutup konduktor dan terakhir di tutup lagi oleh lapisan yang disebut jacket.
Kegunaan kabel coaxial adalah untuk melakukan transmisi data kecepatan tinggi dan juga digunakan untuk membagi sinyal broadband atau sinyal frekuensi tinggi. Kabel coaxial biasa kita temui pada barang2 elektronik misalnya antena TV, dll.

2. Serat Optik
Serat optik adalah saluran transmisi atau sejenis kabel yang terbuat dari kaca atau plastik yang sangat halus dan lebih kecil dari sehelai rambut, dan dapat digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Sumber cahaya yang digunakan biasanya adalah laser atau LED. Kabel ini berdiameter lebih kurang 120 mikrometer. Cahaya yang ada di dalam serat optik tidak keluar karena indeks bias dari kaca lebih besar daripada indeks bias dari udara, karena laser mempunyai spektrum yang sangat sempit. Kecepatan transmisi serat optik sangat tinggi sehingga sangat bagus digunakan sebagai saluran komunikasi.
Perkembangan teknologi serat optik saat ini, telah dapat menghasilkan pelemahan (attenuation) kurang dari 20 decibels (dB)/km. Dengan lebar jalur (bandwidth) yang besar sehingga kemampuan dalam mentransmisikan data menjadi lebih banyak dan cepat dibandingan dengan penggunaan kabel konvensional. Dengan demikian serat optik sangat cocok digunakan terutama dalam aplikasi sistem telekomunikasi. Pada prinsipnya serat optik memantulkan dan membiaskan sejumlah cahaya yang merambat didalamnya.



pengertian KOMJAR

Komunikasi data adalah proses pengiriman informasi diantara dua titik menggunakan kode biner melewati saluran transmisi dan peralatan switching dapat terjadi antara komputer dengan komputer, komputer dengan terminal atau komputer dengan peralatan. Komunikasi data merupakan gabungan dari teknik telekomunikasi dengan teknik pengolahan data. Komunikasi Data dan Jaringan Komputer
Adapun tujuan dari komunikasi data adalah sebagai berikut : 

  • Memunkinkan pengiriman data dalam jumalh besar efisien, tanpa kesalahan dan ekomis dari suatu tempat ketempat yang lain.
  • Memungkinkan penggunaan sistem komputer dan perlatan pendukung dari jarak jauh (remote computer use).
  • Memungkinkan penggunaan komputer secara terpusat maupun secara tersebar sehingga mendukung manajemen dalam hal kontrol, baik desentralisasi ataupu sentralisasi.
  • Mempermudah kemungkinan pengelolaan dan pengaturan data yang ada dalam berbagai mcam sistem komputer.
  • Mengurangi waktu untuk pengelolaan data.
  • Mendapatkan da langsung dari sumbernya.
  • Mempercepat penyebarluasan informasi.
Model Komunikasi Data
Komunikasi data berkaitan dengan pertukaran data diantara dua perangkat yang terhubuang secara langsung yang memungkinkan adanya pertukaran data antar kedua pihak.gambar 2.1 menggambarkan proses komunikasi data.
Komunikasi Data dan Jaringan Komputer
Gambar 2.1 Komunikasi Data
Pada gambar 2.1 terdapat elemen-elemen dalam kunci model tersebut :
  • Source (sumber) : Alat ini membangkitkan data sehingga dapat ditransmisikan, contoh telepon, Personal Computer (PC)
  • Transmitter (pengirim): Biasanya data yang dibangkitkan dari sister sumber tidak ditransmisikansecara langsung dalam bentuk aslinya. Sebuah transmitter cukup memindah dan menandai informasi dengan cara yang sama seperti sinyal-sinyal elektromagnetik yang dapat ditransmisikan melewati beberapa sistem transmisi berurutan.
  • Sistem transmisi : Berupa jalur transmisi tunggal (single transmission)atau jarinagn komplek(complex network)yang menghubungkan antara sumber dengan tujuan (destination).
  • Tujuan (destination) : menangkap data yang dihasilkan oleh receiver

Jaringan Komunikasi Data
Jaringan komunikasi dapat diartikan sebagai suatu sistem yang terbentuk dari interkoneksi fasilitas-fasilitas yang dirancang untuk membawa trafik dari beragam sumber telekomunikasi.

Suatu jaringan terdiri dari link dan node. Istilah node digunakan untuk merepresentasikan sentral, junction  atau keduanya. Istilah link digunakan untuk merepresentasikan kabel, peralatan transmisi, dan sebagainya. Sedangkan trafik adalah informasi yang terdapat di dalam jaringan, yang mengalir melalui link dan node.     

Suatu jaringan komunikasi merupakan sumber daya yang dapat dipakai secara bersamaan (shared) oleh sejumlah end user untuk berkomunikasi dengan user lain yang likasinya berjauhan. Tidak semua user menggunakan jaringan pada waktu yang bersamaan, oleh karena itu merupakan suatu hal yang logis apabila sumber daya jaringanyang sangat penting ini dipakai bersama-sama. Penggunaan sumber daya secara bersamaan ini melahirkan konsep sentral. 
Berikut beberapa tipe jaringan Komunikasi: Komunikasi Data dan Jaringan Komputer
a.  LAN (Local Area Network)
LAN digunakan untuk menghubungkan komputer yang berada di dalam suatu area yang kecil, misalnya di dalam suatu gedung perkantoran atau kampus. Jarak antar komputer yang dihubungkan bias mencapai 5 sampai 10 km. Suatu LAN biasnya bekerja pada kecepatan mulai 10 Mbps sampi 100 Mbps. LAN menjadi populer karena memungkinkan banyak pengguna untuk memakai sumber daya yang dapat digunakan itu misalnya suatu mainframe, file server, printer, dan sebagainya.
b.    MAN (Metropolitan Area Network)
MAN merupakan suatu jaringan yang cakupannya meliputi suatu kota. MAN menghubungkan LAN-LAN yang lokasinya berjauhan. Jangkauan MAN mencapai 10 km sampai beberapa ratus km. Suatu MAN biasanya bekerja pada kecepatan 1,5 sampai 150 Mbps.
c.    WAN (Wide Area Network)
WAN dirancang untuk menghubungkan komputer-komputer yang terletak pada suatu cakupan geografis yang luas,seperti hubungan dari suatu kota ke kota yang lain didalm suatu Negara. Cakupan WAN bias meliputi 100 km sampai 1.000 km, dan kecepatan antar kota bias bervariasi antara 1,5 Mbps sampai 2,4 Gbps. Dalam WAN, biaya untuk peralatan untuk transmisi sangat tinggi,dan biasanya jaringan WAN dimiliki dan dioperasikan sebagai suatu jaringan public.
d.    GAN (Global Area Network) GAN merupakan suatau jarinagn yang menghubungkan Negara-negara diseluruh dunia. Kecepatan GAN bervariasi mulai dari 1,5 Mbps sampai dengan 100 Gbps dan cakupannya mencakupi ribuan kilometer.